754 research outputs found

    Spectroscopy of the odd-odd fp-shell nucleus 52Sc from secondary fragmentation

    Get PDF
    The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam. Aside from the known gamma-ray transition at 674(5)keV, a new decay at E_gamma=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of 52Sc irrespective of the choice of the effective interaction. In addition, the frequency of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.Comment: accepted for publication in PR

    One-neutron knockout in the vicinity of the N=32 sub-shell closure: 9Be(57Cr,56Cr+ gamma)X

    Get PDF
    The one-neutron knockout reaction 9Be(57Cr,56Cr + gamma)X has been measured in inverse kinematics with an intermediate-energy beam. Cross sections to individual states in 56Cr were partially untangled through the detection of the characteristic gamma-ray transitions in coincidence with the reaction residues. The experimental inclusive longitudinal momentum distribution and the yields to individual states are compared to calculations that combine spectroscopic factors from the full fp shell model and nucleon-removal cross sections computed in a few-body eikonal approach.Comment: PRC, in pres

    Cross-shell excitation in two-proton knockout: Structure of 52^{52}Ca

    Get PDF
    The two-proton knockout reaction 9^9Be(54^{54}Ti,52^{52}Ca+γ + \gamma) has been studied at 72 MeV/nucleon. Besides the strong feeding of the 52^{52}Ca ground state, the only other sizeable cross section proceeds to a 3^- level at 3.9 MeV. There is no measurable direct yield to the first excited 2+^+ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of 52^{52}Ca

    Large scale shell model calculations for odd-odd 5862^{58-62}Mn isotopes

    Full text link
    Large scale shell model calculations have been carried out for odd-odd 5862^{58-62}Mn isotopes in two different model spaces. First set of calculations have been carried out in full fp\it{fp} shell valence space with two recently derived fp\it{fp} shell interactions namely GXPF1A and KB3G treating 40^{40}Ca as core. The second set of calculations have been performed in fpg9/2{fpg_{9/2}} valence space with the fpgfpg interaction treating 48^{48}Ca as core and imposing a truncation by allowing up to a total of six particle excitations from the 0f7/2_{7/2} orbital to the upper fp\it{fp} orbitals for protons and from the upper fp\it{fp} orbitals to the 0g9/2_{9/2} orbital for neutron. For low-lying states in 58^{58}Mn, the KB3G and GXPF1A both predicts good results and for 60^{60}Mn, KB3G is much better than GXPF1A. For negative parity and high-spin positive parity states in both isotopes fpgfpg interaction is required. Experimental data on 62^{62}Mn is sparse and therefore it is not possible to make any definite conclusions. More experimental data on negative parity states is needed to ascertain the importance of 0g9/2_{9/2} and higher orbitals in neutron rich Mn isotopes.Comment: 5 pages, 4 figures, Submitted to Eur. Phys. J.

    Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

    Full text link
    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR

    Population of bound excited states in intermediate-energy fragmentation reactions

    Get PDF
    Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure

    Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

    Get PDF
    The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review

    Shell structure at N=28 near the dripline: spectroscopy of 42^{42}Si, 43^{43}P and 44^{44}S

    Get PDF
    Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported. The knockout reaction cross sections for populating 42Si and 43P and a 184 keV gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits are nearly degenerate in these nuclei and that there is a substantial Z=14 subshell closure separating these two orbits from the d_{5/2} orbit. The increase in the inclusive two-proton knockout cross section from 42Si to 44S demonstrates the importance of the availability of valence protons for determining the cross section. New calculations of the two-proton knockout reactions that include diffractive effects are presented. In addition, it is proposed that a search for the d_{5/2} proton strength in 43P via a higher statistics one-proton knockout experiment could help determine the size of the Z=14 closure.Comment: Phys. Rev. C, in pres
    corecore